动态规划与递归算法 M苹果放N盘子

问题:
把 M 个同样的苹果放在 N 个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?
注意:5、1、1 和 1、5、1 是同一种分法,即顺序无关。

来源:牛客

分析:

  • 难点: 当苹果大于盘子时,怎么确定有多少种放法,此时我们考虑了分类
  • 思路来源: 分类计数原理:完成一件事情有n类办法,那么完成这件事共有N=m1+m2+…+mn 种不同的方法
  • 分类:
    分为有空盘和没有空盘的两种情况
  • 检查分类:
    1. 完备性
      是否囊括所有情况:所有的放苹果方法,要么有空盘,要么没有空盘
    2. 分类是否重复
      一类有空盘,一类无空盘,不会重复
  • 分类后,如何操作可以保证满足分类条件:
    1. 保证有空盘
      单独拿一个盘子不放,此时的情形,相当于f(apple, plate-1)
    2. 保证没有空盘
      首先每个盘子放一个苹果,这样就可以保证没有空盘,此时的情形,相当于f(apple-plate,plate)

总结:
1. 递归出口:当只有一个盘子或者含有 0 个或1个苹果的时候只有一种方法
2. 当盘子数 n 大于苹果数 m 时,则必有 n - m 个空盘子,所以只需求 m 个盘子放 m 个苹果时的方法数即可
3. 当盘子数 n 小于等于 苹果数 m 时,总方法数 = 当含有一个空盘子时的方法数+不含空盘子时的方法数。

原因:当在求只含有一个空盘子时的方法数时,已经包含了含有 2 ~ n - 1 个空盘子的情况。
不含空盘子的计算:先将每个盘子装一个苹果,则问题变成了求 n 个盘子放 m - n个苹果的方法数了。

求解:

  • 递归算法
#include <iostream>
using namespace std;

int dp(int m, int n)
{
    // 递归出口:有0个苹果 || 只有1个盘子
    if (m == 0 || n == 1)
        return 1;
    if (n>m) // 盘子比较多,肯定有空盘子,去掉必空的盘子
        return dp(m, m);
    else // 苹果比较多:
        // 1:至少有一个空盘子,拿掉这个空盘子
        // 2:每个盘子都有苹果,各拿掉一个苹果(极限是最少的有1个苹果)
        return dp(m, n - 1) + dp(m - n, n);
}

int main()
{
    int m, n;
    while (cin >> m >> n)
        cout << dp(m, n) << endl;
    return 0;
}
  • 动态规划
    新建一个动态规划表 dp;dp[i][j] 表示 i 个盘子放 j 个苹果的方法数。
    当 i > j 时,dp[i][j] = dp[i - (i - j)][j] = dp[j][j] (原因上面已经讲过)
    当 i <= j 时,dp[i][j] = dp[i - 1][j] + dp[i][j - i];
    最后dp[n][m] 就是所求。
int** getdp1 (int m, int n)
{
    if( m == 0 || m == 1 || n == 1 )
    {
        return NULL;
    }
    int **dp = new int *[n + 1];
    for( int i = 0; i <= n; i++ )
    {
        dp[i] = new int[m + 1];
        for( int j = 0; j <= m; j++ )
        {
            dp[i][j] = 1;
        }
    }

    for( int i = 2; i <= n; ++i)
    {
        for( int j = 2; j <= m; ++j)
        {
            if( i > j )
            {
                dp[i][j] = dp[j][j];
            }
            else
            {
                dp[i][j] = dp[i - 1][j] + dp[i][j - i];
            }
        }
    }
    return dp;
}

int putApple2 (int m, int n)
{
    if( m == 0 || m == 1 || n == 1 )
    {
        return 1;
    }
    int **dp = getdp1 (m, n);
    return dp[n][m];
}

问题变形:
整数划分的一种:求将一个整数m至多划分成n个数有多少种情况

变形:求将一个整数m划分成n个数有多少种情况
dp[m][n] = dp[m-n][n] + dp[m-1][n-1]; 对于变形后的问题,存在两种情况:
1. n 份中不包含 1 的分法,为保证每份都 >= 2,可以先拿出 n 个 1 分到每一份,然后再把剩下的 m- n 分成 n 份即可,分法有: dp[m-n][n]
2. n 份中至少有一份为 1 的分法,可以先那出一个 1 作为单独的1份,剩下的 m- 1 再分成 n- 1 份即可,分法有:dp[m-1][n-1]


import java.util.Scanner;

public class Main {

    public static final int maxn = 25;
    public static void main(String[] args) {

        int[][] dp = new int[maxn][maxn];
        for(int i=1;i<maxn;i++){
            dp[i][1] = 1;
            dp[i][i] = 1;
        }
        for(int i=1;i<maxn;i++){
            for(int j=2;j<maxn;j++){
                if(i>j)
                    dp[i][j] = dp[i-j][j] + dp[i-1][j-1];
                else if(i == j)
                    dp[i][j] = 1;
                else
                    dp[i][j] = 0;
            }
        }

        Scanner sc = new Scanner(System.in);
        while(sc.hasNext()){
            int m = sc.nextInt();
            int n = sc.nextInt();
            int res = 0;

            // 回到变形前,至多划分为n个数,而不是只划分为n个数
            for(int i=1;i<=n;i++)
                res += dp[m][i];
            System.out.println(res);
        }
    }
}

参考自:https://www.nowcoder.com/questionTerminal/a2a1d0266629404fba582d416d84b6a0

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
动态规划算法动态规划算法的思路是:先构建一个二维数组 dp,其中 dp[i][j] 表示 s1 的前 i 个字符和 s2 的前 j 个字符的最长公共子序列的长度。然后,依次填充 dp 数组的每个元素,最终得到 dp[m][n] 就是 s1 和 s2 的最长公共子序列的长度。 具体的填充方法是,从左到右、从上到下遍历 dp 数组,根据归表达式,依次计算出每个 dp[i][j] 的值。最终得到 dp[m][n] 就是所求。 Python代码如下: ``` def longest_common_subsequence(s1, s2): m, n = len(s1), len(s2) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if s1[i-1] == s2[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] ``` 算法算法的思路是:根据归表达式,依次归求解 s1 的前 i 个字符和 s2 的前 j 个字符的最长公共子序列的长度。具体的归过程如下: 1. 如果 s1 或 s2 为空字符串,则它们的最长公共子序列的长度为 0。 2. 如果 s1 和 s2 的最后一个字符相同,则它们的最长公共子序列的长度为它们各去掉最后一个字符后的子串的最长公共子序列的长度加上 1。 3. 如果 s1 和 s2 的最后一个字符不同,则它们的最长公共子序列的长度为它们分别去掉最后一个字符后的子串的最长公共子序列的长度的最大值。 归函数的代码如下: ``` def longest_common_subsequence(s1, s2): m, n = len(s1), len(s2) if m == 0 or n == 0: return 0 if s1[m-1] == s2[n-1]: return longest_common_subsequence(s1[:m-1], s2[:n-1]) + 1 else: return max(longest_common_subsequence(s1[:m-1], s2), longest_common_subsequence(s1, s2[:n-1])) ``` 注意:算法的时间复杂度较高,不适合处理较长的字符串,而动态规划算法的时间复杂度为 O(mn),适用于处理长度较大的字符串。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值